Problems, Chapter 16 (with solutions) NOTE: Unless otherwise stated, assume T = 25.°C in all problems)

1) What is the Arrhenius definition of an acid? Of a base?

An Arrhenius acid is a substance that produces H⁺ ions when added to water. An Arrhenius base is a substance that produces OH⁻ ions when added to water.

2) What is the Bronsted-Lowry definition of an acid? Of a base?

A Bronsted acid is a proton donor, and forms a conjugate base after donating a proton. A Bronsted base is a proton acceptor, and forms a conjugate acid after accepting a proton.

3) What is the Lewis definition of an acid? Of a base?

A Lewis acid is an electron pair acceptor. A Lewis base is an electron pair donor.

- 4) (16.2) Identify the acid-conjugate base and base-conjugate acid pairs in each of the following reactions in aqueous solution.

b) $HCO_3^- + HCO_3^- \implies H_2CO_3 + CO_3^{2-}$

acid =
$$HCO_3^-$$
 conj base = CO_3^{2-}
base = HCO_3^- conj acid = H_2CO_3

c) $H_2PO_4^- + NH_3 \iff HPO_4^{2-} + NH_4^+$

$$acid = H_2PO_4^ conj base = HPO_4^{2-}$$

 $base = NH_3$ $conj acid = NH_4^+$

d) $HClO + CH_3NH_2 + CH_3NH_3^+ + ClO^-$

e) $CO_3^{2-} + H_2O \implies HCO_3^{-} + OH^{-}$

$$acid = H_2O$$
 $conj base = OH^-$
 $base = CO_3^{2-}$ $conj acid = HCO_3^{-}$

5) Identify each of the following species as a strong acid, weak acid, strong soluble base, insoluble base, or weak base.

a) HCN	(weak acid)
b) Cu(OH) ₂	(insoluble base)
c) HNO ₂	(weak acid)
d) NaOH	(strong soluble base)
e) HClO ₃	(strong acid)
f) HClO	(weak acid)
g) NH ₃	(weak base)

6) What is meant by the term <u>amphoteric</u>. Show by giving an appropriate set of reactions how the HSO₃⁻ anion exhibits amphoteric properties.

A substance is amphoteric if it can behave as either a Bronsted acid or a Bronsted base, depending on the particular reaction taking place. For example, for HSO₃

$$HF(aq) + HSO_3^-(aq) \leftrightarrows F^-(aq) + H_2SO_3(aq)$$
 HSO_3^- acts as a Bronsted base $NH_3(aq) + HSO_3^-(aq) \leftrightarrows NH_4^+(aq) + SO_3^2^-(aq)$ HSO_3^- acts as a Bronsted acid

7) Complete the table (all solutions are at 25. °C)

$[H_3O^+]$	[OH ⁻]	pН	Acid or base
3.5 x 10 ⁻³	$\frac{2.9 \times 10^{-12}}{3.8 \times 10^{-7}}$ $\frac{5.6 \times 10^{-6}}{1.4 \times 10^{-7}}$	2.46	acid
2.6 x 10 ⁻⁸		7.58	base
1.8 x 10 ⁻⁹		8.74	base
7.1 x 10 ⁻⁸		7.15	base

8) The value for the autoionization constant for water at T = 40.0 °C is $K_w = 2.92 \times 10^{-14}$. What are the values for [H₃O⁺], [OH⁻], and pH for a neutral aqueous solution at this temperature?

The autoionization reaction is

$$H_2O(\ell) + H_2O(\ell) \ \leftrightarrows \ H_3O^+(aq) + OH^-(aq) \qquad \qquad K_w = [H_3O^+] \ [OH^-]$$

	Initial	Change	Equilibri
H_3O^+	0	X	X
OH-	0	X	X

So
$$(x)(x) = x^2 = 2.92 \times 10^{-14}$$
 $x = (2.92 \times 10^{-14})^{1/2} = 1.71 \times 10^{-7}$

So for a neutral solution $[H_3O^+] = [OH^-] = 1.71 \text{ x } 10^{-7} \text{ M}$

$$pH = -\log_{10}(1.71 \times 10^{-7}) = 6.77$$

9) (16.26) Find the pH of each of the following solutions:

$$[OH^{-}] = 2.8 \times 10^{-4} \frac{\text{mol Ba}(OH)_{2}}{\text{L soln}} = \frac{2 \text{ mol OH}^{-}}{1 \text{ mol Ba}(OH)_{2}} = 5.6 \times 10^{-4} \text{ M}$$

$$pOH = -\log_{10}(5.6 \times 10^{-4}) = 3.25$$
; so $pH = 14.00 - 3.25 = 10.75$

b) 5.2 x 10⁻⁴ M HNO₃.

A monoprotic strong acid, so pH = $-\log_{10}(5.2 \times 10^{-4}) = 3.28$

10) How many grams of NaOH would be needed to prepare 500.0 mL of a solution with pH = 12.50?

$$pOH = 14.00 - 12.50 = 1.50$$

$$[OH^{-}] = 10^{-pOH} = 10^{-1.50} = 0.0316 M$$
 $MW(NaOH) = 40.00 \text{ g/mol}$

g NaOH =
$$0.5000 \text{ L soln}$$
 $0.\underline{0316 \text{ mol O}}$ H⁻ $\underline{1 \text{ mol NaOH}}$ $\underline{40.00 \text{ g NaO}}$ H = 0.632 g L soln $\underline{1 \text{ mol OH}}$ $\underline{mol OH}$

11) What are the pH and the percent dissociation for a 0.0800 M aqueous solution of hypochlorous acid (HOCl), a weak acid, at T =25. $^{\circ}$ C. At this temperature the acid equilibrium constant is $K_a = 3.5 \times 10^{-8}$.

$$\begin{aligned} HOCl(aq) + H_2O(\ell) &\leftrightarrows H_3O^+(aq) + OCl^-(aq) \\ & \quad K_a = \underline{[H_3O^+] \ [OCl^-]} = 3.5 \ x \ 10^{-8} \\ & \quad [HOCl] \end{aligned}$$

		Initial	Change	Equilibrium
	H_3O^+	0	X	X
	OCl-	0	X	X
	HOCl	0.0800	- X	0.0800 - x
So	$\frac{(x)(x)}{(0.0800 - x)}$	$= 3.5 \times 10^{-8}$	Ass	sume $x << 0.0800$, then
	$\underline{\mathbf{x}}^2 = 3$ (0.0800)	3.5 x 10 ⁻⁸		
	$x^2 = (0.080$	$0) (3.5 \times 10^{-8}) =$	2.8 x 10 ⁻⁹	
	x = (2.8 x 1)	$(10^{-9})^{1/2} = 5.3 \times 10^{-9}$) ⁻⁵ pH	$= -\log_{10}(5.3 \times 10^{-5}) = 4.28$

The percent dissociation is

% dissociation =
$$[OCl^-]_{eq}$$
 x 100 % = $\underline{5.3 \times 10}^{-5}$ x 100 % = 0.07 % $[HOCl]_{initial}$ 0.0800

12) (16.52) Find the pH of an aqueous solution at 25. °C that is 0.34 M in phenol (C_6H_5OH , $K_a=1.3 \times 10^{-10}$).

$$C_6H_5OH(aq) + H_2O(\ell) \implies H_3O^+(aq) + C_6H_5O^-(aq)$$

$$K_a = [\underline{H}_3\underline{O}^+][\underline{C}_6\underline{H}_5\underline{O}^-] = 1.3 \text{ x } 10^{-10}$$

 $[C_6H_5OH]$

	Initial	Change	Equilibrium
H_3O	0	X	X
$C_6H_5O^-$	0	X	X
C ₆ H ₅ OH	0.34	-X	0.34 - x
$\frac{(\mathbf{x})(\mathbf{x})}{(0.34 - \mathbf{x})}$	$= 1.3 \times 10^{-10}$		

Assume $x \ll 0.34$. Then

$$\underline{\mathbf{x}}^2 = 1.3 \times 10^{-10} \quad \mathbf{x}^2 = (0.34)(1.3 \times 10^{-10}) = 4.42 \times 10^{-11}$$

0.34

$$x = (4.42 \times 10^{-11})^{1/2} = 6.65 \times 10^{-6}$$

Since $6.65 \times 10^{-6} \ll 0.34$, our approximation was good. Therefore

$$[H_3O^+] = x = 6.65 \text{ x } 10^{-6} \text{ M}$$
 $pH = -\log_{10}(6.65 \text{ x } 10^{-6}) = 5.18$

13) The pH of an aqueous solution of an unknown monoprotic acid is pH = 5.20 at T = 25. °C. The concentration of the acid is 0.010 M. What is K_a for the acid?

Call the weak acid HA

$$HA(aq) + H_2O(\ell) \implies H_3O^+(aq) + A^-(aq)$$

$$K_a = \underline{[H_3O^+][A^-]}$$
 [HA]

Since pH = 5.20, then at equilibrium $[H_3O^+] = 10^{-pH} = 10^{-5.20} = 6.31 \text{ x } 10^{-6} \text{ M}$

But
$$[A^-] = [H_3O^+] = 6.31 \times 10^{-6} M$$

[HA] =
$$0.010 - 6.31 \times 10^{-6} = 0.010 \text{ M}$$

$$K_a = (6.31 \times 10^{-6})(6.31 \times 10^{-6}) = 4.0 \times 10^{-9}$$

 0.010

14) (16.70) Find the pH for each of the following solutions at T = 25. °C.

In both cases it is easiest to first find pOH, and then convert to pH

a)
$$0.10 \text{ M NH}_3 (K_b = 1.8 \times 10^{-5})$$

$$NH_3(aq) + H_2O(\ell) \implies NH_4^+(aq) + OH^-(aq)$$

$$K_b = [\underline{NH_4}^+]\underline{[OH^-]} = 1.8 \ x \ 10^{-5}$$

$$[NH_3]$$

	Initial	Change	Equilibrium
$\mathrm{NH_4}^+$	0	X	X
OH-	0	X	X
NH_3	0.10	- X	0.10 - x
$\frac{(\mathbf{x})(\mathbf{x})}{(0.10 - \mathbf{x})}$	$= 1.8 \times 10^{-5}$		

Assume $x \ll 0.10$ Then

$$\underline{\mathbf{x}}^2 = 1.8 \times 10^{-5}$$
 $\mathbf{x}^2 = (1.8 \times 10^{-5})(0.10) = 1.8 \times 10^{-6}$
0.10

$$x = (1.8 \times 10^{-6})^{1/2} = 1.34 \times 10^{-3}$$

Since $1.34 \times 10^{-3} \ll 0.10$, our approximation was good.

So
$$[OH^-] = x = 1.34 \times 10^{-3}$$
 $pOH = -\log_{10}(1.34 \times 10^{-3}) = 2.87$

$$pH = 14.00 - 2.87 = 11.13$$

b) 0.050 M pyradine (C_5H_5N , $K_b = 1.7 \times 10^{-9}$)

$$C_6H_5N(aq) + H_2O(\ell) \iff C_6H_5NH^+(aq) + OH^-(aq)$$

$$K_b = [\underline{C}_6 \underline{H}_5 \underline{N} \underline{H}^+] [\underline{O} \underline{H}^-] = 1.7 \text{ x } 10^{-9} [\underline{C}_6 \underline{H}_5 \underline{N}]$$

	Initial	Change	Equilibrium
C ₆ H ₅ NH ⁺	0	X	X
C_6H_5N	0.050	X - X	x 0.050 - x
$\frac{(x)(x)}{(0.050 - x)}$	$= 1.7 \times 10^{-9}$		

Assume $x \ll 0.050$ Then

$$\underline{\mathbf{x}}^2 = 1.7 \times 10^{-9}$$
 $\mathbf{x}^2 = (1.7 \times 10^{-9})(0.050) = 8.5 \times 10^{-11}$
0.050

$$x = (8.5 \times 10^{-11})^{1/2} = 9.22 \times 10^{-6}$$

Since $9.22 \times 10^{-6} \ll 0.050$, our approximation was good.

So
$$[OH^-] = x = 9.22 \times 10^{-6}$$
 $pOH = -\log_{10}(9.22 \times 10^{-6}) = 5.04$ $pH = 14.00 - 5.04 = 8.96$

15) Determine the pH and percent ionization of a 0.220 M solution of benzoic acid (C_6H_5COOH , $K_a=6.5 \times 10^{-5}$).

Benzoic acid is C_6H_5COOH , $K_a = 6.5 \times 10^{-5}$

$$C_6H_5COOH(aq) + H_2O(\ell) \ \leftrightarrows \ H_3O^+(aq) + C_6H_5COO^-(aq)$$

$$K_a = [\underline{H}_3 \underline{O}^+] [\underline{C}_6 \underline{H}_5 \underline{COO}^-] = 6.5 \times 10^{-5} \\ [\underline{C}_6 \underline{H}_5 \underline{COOH}]$$

	Initial	Change	Equilibrium
H ₃ O ⁺ C ₆ H ₅ COO ⁻ C ₆ H ₅ COOH	0 0 0.220	x x - x	x x 0.220 - x
$\frac{(\mathbf{x})(\mathbf{x})}{(0.220 - \mathbf{x})} =$	1.8 x 10 ⁻⁴		

Assume $x \ll 0.220$. Then

$$\underline{x}^2 = 6.5 \times 10^{-5}$$
; $x^2 = (0.220) (6.5 \times 10^{-5}) = 1.43 \times 10^{-5}$
 0.220
 $x = (1.43 \times 10^{-5})^{1/2} = 3.78 \times 10^{-3}$

Is $3.78 \times 10^{-3} \ll 0.225$? YES. (We say small if at least 10 times smaller).

So pH =
$$-\log_{10}(3.78 \times 10^{-3}) = 2.42$$

Now, percent ionization = <u>concentration of ionized acid</u> x 100% initial concentration of acid

So % ionization =
$$3.78 \times 10^{-3} \cdot 100 \% = 1.7 \%$$

- 16) The acid dissociation constant for acetic acid (CH₃COOH) is $K_a = 1.8 \times 10^{-5}$ at T = 25. °C.
 - a) What is pKa for acetic acid?
 - b) What is K_b for the acetate ion, CH_3COO^- ?
- c) Which of the following acids is a stronger acid than acetic acid: HNO_2 , C_6H_5COOH , HCN?
- d) Which of the following anions is a stronger base than the acetate anion: NO_2^- , $C_6H_5COO^-$, CN^- ?

There is a table of acid ionization constants in Burge (Table 16.5) that may be of use in doing parts c and d of this problem.

a)
$$pK_a = -\log_{10}(1.8 \times 10^{-5}) = 4.74$$

b) For an acid/conjugate base pair, $K_a K_b = 1.0 \times 10^{-14}$

$$K_b = \frac{1.0 \times 10^{-14}}{K_a} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

c)
$$K_a(HNO_2) = 4.5 \times 10^{-4}$$

 $K_a(C_6H_5COOH) = 6.5 \times 10^{-5}$
 $K_a(HCN) = 4.9 \times 10^{-10}$

Based on the values for K_a , HNO₂ and C_6H_5COOH are stronger acids than CH_3COOH , and HCN is a weaker acid than CH_3COOH .

d) Since K_a $K_b = 1.0$ x 10^{-14} for a weak acid/conjugate base pair, whichever weak acids that are stronger than acetic acid will have conjugate bases that are weaker bases than acetate ion. So CN^- is a stronger base than CH_3COO^- , and NO_2^- and $C_6H_5COO^-$ are weaker bases than CH_3COO^- .

17) (16.10) Predict the relative acid strength of the following compounds: H_2O , H_2S , H_2Se .

For binary acids in the same column acid strength increases from top to bottom, so $H_2Se > H_2S > H_2O$.

- 18) Based on molecular structure arrange the binary compounds in order of increasing acid strength. Explain your reasoning.
 - a) H₂Te, HI, H₂S

$$H_2Te > H_2S$$
 (same group) $HI > H_2Te$ (same row)

So
$$HI > H_2Te > H_2S$$

b) HClO, HClO₂, HBrO

HClO > HBrO (same group, same number of O)

 $HClO_2 > HClO$ (same third nonmetal, more O in $HClO_2$)

- 19) Determine whether each salt will form a solution that is acidic, basic, or neutral.
 - a) C₂H₅NH₃NO₃ strong acid + weak base salt, so acidic b) K₂CO₃ weak acid + strong base salt, so basic c) RbI strong acid + strong base salt, so neutral
 - c) RbI strong acid + strong base salt, so neutral
 d) NH₄ClO weak acid + weak base salt, so approximately neutral

(might be slightly acidic or basic)

20) (16.96) Find the pH of a 0.082 M solution of NaF (K_a for HF is 7.1 x 10⁻⁴).

$$NaF(s) \rightarrow Na^{+}(aq) + F(aq)$$
 Initial F concentration is 0.082 M

F is the conjugate base of HF, a weak acid, so F is a weak base. Na⁺ has no acid/base properties.

$$F^{-}(aq) + H_2O(\ell) \iff HF(aq) + OH^{-}(aq)$$

$$K_b = [\underline{HF}][\underline{OH}^{\scriptscriptstyle{\text{-}}}]$$

$$[F^{\scriptscriptstyle{\text{-}}}]$$

 $K_a K_b = 1.0 \times 10^{-14}$ for an acid/conjugate base pair, so K_b for F^- is

$$K_b = 1.\underline{0 \ x \ 1}{K_a}0^{\text{-}14} \ = \ \underline{1.0 \ x \ 10^{\text{-}14}} \ = 1.41 \ x \ 10^{\text{-}11}$$

	Initial	Change	Equilibrium
HF	0	X	X
OH^{-}	0	X	X
F	0.082	- X	0.082 - x
$\frac{(x)(x)}{(0.082 - x)}$	$= 1.41 \times 10^{-11}$		

Assume $x \ll 0.082$ Then

$$\underline{\mathbf{x}}^2 = 1.41 \times 10^{-11}$$
 $\mathbf{x}^2 = (1.41 \times 10^{-11})(0.082) = 1.16 \times 10^{-12}$ 0.082

$$x = (1.16 \times 10^{-12})^{1/2} = 1.08 \times 10^{-6}$$

Since $1.08 \times 10^{-6} \ll 0.082$, our approximation was good.

So [OH⁻] = x = 1.08 x 10⁻⁶ pOH =
$$-\log_{10}(1.08 \text{ x } 10^{-6}) = 5.97$$

pH = 14.00 - 5.97 = 8.03

21) Identify the Lewis acid and Lewis base from among the reactants in each equation.

A Lewis acid is an electron pair acceptor, and a Lewis base is an electron pair donor.

a)
$$Ag^{+}(aq) + 2 NH_{3}(aq) \implies Ag(NH_{3})_{2}^{+}(aq)$$

 Ag^+ is a Lewis acid, NH_3 is a Lewis base (Ag^+ is accepting electron pairs from the N atom in NH_3).

b)
$$AlBr_3 + NH_3 \leftrightarrows H_3NAlBr_3$$

AlBr₃ is a Lewis acid, and NH₃ is a Lewis base (Al is accepting an electron pair from the N atom in NH₃).

c)
$$F(aq) + BF_3(aq) \leftrightarrows BF_4(aq)$$

 BF_3 is a Lewis acid, and F is a Lewis base (B is accepting an electron pair from the F anion).