							IOI				ui oii)						
1 A																	8 A
1	1																2
Ĥ	24											24	44	54	CA	78	He
1.01	ZA	1										3A	44	AC	6A	/٨	4.00
3	4 Bo											5 p	6	7	8	9	10 No
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.1
11	12	1										13	14	15	16	17	18
Na 22.00	Mg											Al ac ae	Si	P	5		Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.41	69.72	72.64	74.92	78.96	79.90	83.8
S/ Rh	38 Sr	39 Y	40 7r	41 Nh	42 Mo	43 Tc	Ru Ru	45 Rh	46 Pd	4/ Aa	48 Cd	49 In	50 Sn	51 Sh	52 Te	53	54 Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu 175 0	Hf	181 O	193.9	Re	0s	192.2	Pt	Au	Hg	11	Pb 207.2	Bi	P0	At	Rn [2221
87	88	103	104	105	106	100.2	130.2	1 JL.L	133.1	1.77.0	200.0	204.4	201.2	203.0	203		
Fr	Ra	Lr	Rf	Db	Sg												
[223]	[226]	[262]	[261]	[262]	[266]	2											
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	1
			La	Ce	Pr	Nd 144 2	Pm [145]	Sm 150 4	Eu 152 0	Gd	158 Q	Dy 162 5	H0	Er 1673	Im 168 9	Yb	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	1
			Ac	Th	Pa	U	Np	Pu	Am	Ст	Bk	Cf	Es	Fm	Md	No	
			[227]	232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	
N. 1	A = 6.0	22 x 1 1.661	0^{23} x 10^{-27}	kσ		$^{\circ}C = 0$ $^{\circ}C = 0$	(⁵ /9) (° <u>1</u> K - 273	F - 32) 3.15	I		°F K	S = (9/5) = °C +)(°C) + - 273.1	- 32			
1	atm = '	760 toi	rr = 760	ng 0 mm l	Hσ	1 atm	= 1.01	3 har			n\	I = nR	т <u>2,3.1</u> Т				
R	= 0.08	206 L•	•atm/m	ol•K	-6	1 L•a	tm = 10	01.3 J			Г		-				
R	= 8.31	4 J/mo	ol•K			1 J= 1	kg•m	$^{2}/\mathrm{s}^{2}$									
							8										
DA	$A = X_A$	D A ^o				[B] =	kрв				Δr	$\mathbf{b}_{\mathrm{A}} = \mathbf{X}$	в р а°				
Γ Λ	$\Gamma_{\rm b} = K_{\rm b}$	- m _B				$\Lambda T_{\rm f} =$	K _f m _R				П	$= M_{\rm R}$	RT.				
	10 11	, ind					i i ing					1,101					
Н	= U +	pV				G = H	I - TS										
Δ	$G_{rxn} = 2$	∆G° _{rxn}	+ RT 1	n Q		ln K =	$= -\Delta G$	° _{rxn} /R7	Γ		K	$S = K_C$	(RT) ^{∆ı}	ng			
If	$ax^2 + b$	$\mathbf{b}\mathbf{x} + \mathbf{c}$	=0, the	en x =	(<u>- b ±</u>	<u>[b² - 4</u> 2a	<u>ac]^{1/2})</u>										
Ka	$_{a} \cdot K_{b} = $	K _w									pł	I + pO	$\mathbf{H} = \mathbf{p}$	K _w			
Ka	$_{a} \cdot K_{b} =$	1.0 x 1	10 ⁻¹⁴ (a	t T = 2	25. °C)						pŀ	I + pO	H = 14	4.00 (at	t T = 2	25. °C)	

GENERAL CHEMISTRY 2 SECOND HOUR EXAM MARCH 18, 2022

Name		
Panthersoft ID		
Signature		
	Part 1	(20 points)
	Part 2	(42 points)
	Part 3	(38 points)
	TOTAL	(100 points)

Do all of the following problems. <u>Show your work.</u>

•

Unless otherwise stated, you may assume T = 25. °C in all problems.

Part 1. Multiple choice. Circle the letter corresponding to the correct answer. There is one and only one correct answer per problem. [4 points each]

1) For a system at equilibrium which of the following could be true?

a) $Q_C > K_C$ b) $Q_C = K_C$ c) $Q_C < K_C$

В

d) Both a and ce) Both a and b and c

2) In the gas phase sulfur dioxide (SO₂) and chlorine (Cl₂) will react to form sulfuryl dichloride (SO₂Cl₂).

 $SO_2(g) + Cl_2(g) \Rightarrow SO_2Cl_2(g) \quad \Delta H^\circ_{rxn} = -67.2 \text{ kJ/mol} \quad \Delta G^\circ_{rxn} = -19.9 \text{ kJ/mol} \quad \Delta S^\circ_{rxn} = -159.2 \text{ J/mol} \cdot \text{K}$

A system initially at equilibrium contains $SO_2(g)$, $Cl_2(g)$, and $SO_2Cl_2(g)$. Which of the following changes will cause the number of moles of $SO_2(g)$ in the system to increase?

a) Add 0.100 moles of $Cl_2(g)$ to the system

b) Add 0.100 moles of SO₂Cl₂(g) to the system

E c) Increase the temperature of the system by 40.0 °C

d) Both a and c

e) Both b and c

3) Potassium nitrite (KNO₂) is the salt of a weak acid and a strong soluble base. KNO₂

- a) is a strong acid
- b) is a weak acid
- **D** c) is a strong base
 - d) is a weak base
 - e) has no acid or base properties

4) Which of the following oxides is expected to form a base when added to liquid water?

- a) Na₂O
- b) SO₂

A c) N₂O₅

- d) Both b and c
- e) Both a and b and c
- 5) A Lewis acid
 - a) is a proton donor
 - b) is an electron pair donor
- **D** c) is a proton acceptor
 - d) is an electron pair acceptor
 - e) none of the above

Part 2. Short answer.

1) The equilibrium constant for the reaction

 $H_2(g) + Br_2(g) \leftrightarrows 2 HBr(g)$

is $K_C = 2.0 \times 10^9$ at $T = 25. \ ^{\circ}C$.

For a particular system at equilibrium at T = 25. °C [Br₂] = 4.0 x 10⁻⁵ M and [HBr] = 0.164 M. Based on this information, what is the value for [H₂], the concentration of H₂ present in the system? [6 points]

 $K_{C} = \underbrace{[HBr]^{2}}_{[H_{2}]} \text{ and so } [H_{2}] = \underbrace{[HBr]^{2}}_{K_{C}} = \underbrace{(0.164)^{2}}_{(2.0 \text{ x } 10^{9}) (4.0 \text{ x } 10^{-5})} = 3.4 \text{ x } 10^{-7} \text{ M}$

2) The equilibrium constant for the reaction

$$2 \operatorname{N}_2 \operatorname{O}_5(g) \leftrightarrows 4 \operatorname{NO}_2(g) + \operatorname{O}_2(g)$$

is $K_C = 8.0 \times 10^{-6}$ at $T = 25. \ ^{\circ}C.$

a) What is the numerical value for K_p for the above reaction? [4 points]

 $K_p = K_C \; (RT)^{\Delta ng} \qquad \Delta n_g = 5 - 2 = 3$, and so $K_p = (8.0 \; x \; 10^{-6}) \; [\; (0.08206) \; (298.) \;]^3 = 0.117$

b) A particular system has the following initial concentrations: $[N_2O_5] = 0.0160 \text{ M}$; $[O_2] = 0.0500 \text{ M}$. There is initially no NO₂ present in the system. Give an ICE table for this system and initial concentations, <u>but do not use</u> the ICE table to find the equilibrium concentrations that are present. [6 points]

$K_{C} = [\underline{NO_{2}}]^{4} [\underline{O_{2}}]$ $[N_{2}O_{5}]^{2}$			
	Initial	Change	Equilibrium
NO ₂ O ₂	0 0.0500	4x x	$4x \\ 0.0500 + x$
N_2O_5	0.0160	- 2x	0.0160 - 2x

Note that there are other ICE tables that could be given that would also be correct.

3) Define the following term: amphoteric [5 points]

Amphoteric refers to a substance that can act as either a Bronsted acid or a Bronsted base in a chemical reaction. Water (H_2O) , for example, is amphoteric.

4) For each of the following, circle the correct answer. There is one and only one correct answer per problem. [3 points each]

	a) The conjugate base in t	the reaction: $HI(aq) + C_{s}$	$HI(aq) + C_5H_5N(aq) \rightarrow C_5H_5NH^+(aq) + I^-(aq)$					
	C ₅ H ₅ N	$C_5H_5NH^+$	HI	<u>I</u> -				
	b) The hydroxide compound that is a strong soluble base							
	AgOH	<u>CsOH</u>	Cu(OH) ₂					
	c) The strongest weak acid							
	NH ₃	H ₂ O	H_2S	H ₂ Se				
5) The pH of a 0.0270 M solution of a weak monoprotic acid HA is $pH = 4.17$								

a) What are the values for pOH and $[H_3O^+]$ for the solution? [6 points]

At T = 25. °C, pH + pOH = 14.00, and so pOH = 14.00 - pH = 14.00 - 4.17 = 9.83

 $[H_3O^+] = 10^{-pH} = 10^{-4.17} = 6.8 \text{ x } 10^{-5} \text{ M}$

b) What is the value for the percent dissociation for HA in the above solution? [6 points]

For a weak acid, $HA(aq) + H_2O(\ell) \leftrightarrows H_3O^+(aq) + A^-(aq)$

percent dissociation = m<u>olarity of conjugate base forme</u>d x 100 % initial molarity of weak acid

But at equilibrium $[A^-] = [H_3O^+] = 6.8 \times 10^{-5} \text{ M}$

and so percent dissociation = $\frac{6.8 \times 10^{-5}}{0.0270} \times 100\% = 0.25\%$

Part 3. Problems.

1) When carbon dioxide (CO_2) is bubbled through an aqueous solution of a strong base, the following reaction will take place

 $CO_2(g) + 2 OH^-(aq) \leftrightarrows H_2O(\ell) + CO_3^{2-}(aq)$

a) Give the expression for K, the thermodynamic equilibrium constant, for the above reaction. [5 points]

$$K = \frac{[CO_3^{2^-}]}{p_{CO2} [OH^-]^2}$$

b) Using the thermodynamic data below, find the numerical value for K for the above reaction. [12 points]

substance	ΔH^{o}_{f} (kJ/mol)	ΔG°_{f} (kJ/mol)	S° (J/mol•K)
$CO_2(g)$	- 393.5	- 394.4	213.8
$CO_3^{2-}(aq)$	- 677.1	- 527.8	- 56.9
$H_2O(\ell)$	- 285.8	- 237.1	70.0
OH ⁻ (aq)	- 230.0	- 157.2	- 10.8

 $\Delta G^{\circ}_{rxn} = \left[\Delta G^{\circ}_{f}(H_{2}O(\ell)) + \Delta G^{\circ}_{f}(CO_{3}^{2-}(aq)) \right] - \left[\Delta G^{\circ}_{f}(CO_{2}(g)) + 2 \Delta G^{\circ}_{f}(OH^{-}(aq)) \right]$

= [(-237.1) + (-527.8)] - [(-394.4) + 2(-157.2)] = -56.1 kJ/mol

And so $\ln K = -\underline{\Delta G^{\circ}_{rxn}}{RT} = - \underbrace{(-56100. J/mol)}_{(8.3145 J/mol \cdot K) (298.2 K)} = 22.63$

 $k = e^{22.63} = 6.7 \times 10^9$

2) Data for several weak monoprotic acids are given below and may be used in doing the following problem.

CH ₃ COOH	$K_a = 1.8 \times 10^{-5}$	HOCN	$K_a = 3.5 \ x \ 10^{-4}$
HClO	$K_a = 4.0 \ x \ 10^{-8}$	N_2H_4	$K_a = 7.9 \text{ x } 10^{-9}$
HN ₃	$K_a = 2.5 \times 10^{-5}$	HIO	$K_a = 3.2 \times 10^{-11}$

a) Give the conjugate base of cyanic acid (HOCN). [3 points]

conjugate base of HOCN = ____OCN⁻_____

b) The strongest acid from the following list (circle the correct answer). [3 points]

 $CH_{3}COOH HClO <u>HN_{3} N_{2}H_{4}$ </u>

c) The strongest base from the following list (circle the correct answer). [3 points]

CH₃COO⁻ ClO⁻ $N_3^ N_2H_3^-$

d) What is the pH of a 0.0600 M aqueous solution of hypoiodous acid (HIO)? [12 points]

The reaction that occurs is

HIO(aq) + H	$H_2O(\ell) \leftrightarrows H_3O^+(a)$	nq) + IO ⁻ (aq)	$K_{C} = [\underline{H_{3}O^{+}}] [IO^{-}]$ [HIO]
	Initial	Change	Equilibrium
H_3O^+	0	х	х
IO ⁻	0	Х	Х
HIO	0.0600	- x	0.0600 - x

So $(x)(x) = K_a = 3.2 \times 10^{-11}$ If we assume x << 0.060, then (0.0600 - x)

 $\frac{x^2}{0.0600} = 3.2 \text{ x } 10^{-11} \qquad x^2 = (0.0600) (3.2 \text{ x } 10^{-11}) = 1.92 \text{ x } 10^{-12}$ $x = (1.92 \text{ x } 10^{-12})^{1/2} = 1.39 \text{ x } 10^{-6}$

 $[H_3O^+] = x = 1.39 \text{ x } 10^{-6} \text{ M}$ $pH = -\log_{10}[H_3O^+] = -\log_{10}(1.39 \text{ x } 10^{-6}) = 5.86$