1A																	8 A
1 H 1.01	28	2.11										3A	48	5A	6A	78	2 He 4.00
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.1
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
22.99	24.31								9 <u></u> 9			26.98	28.09	30.97	32.07	35.45	39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
9.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.41	69.72	72.64	74.92	78.96	79.90	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
5.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	п	Pb	Bi	Po	At	Rn
32.9	137.3	175.0	178.5	181.0	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[209]	[210]	222
8/	88	103	104	105	106												
Fr	Ra	Lr	Rt	DD	Sg												
223	[226]	[262]	[261]	[262]	[266]												
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	
			138.9	140.1	140.9	144.2	[145]	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0)
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	2
			Ac	Th	Pa	U	Np	Pu	Am	Ст	Bk	Cf	Es	Fm	Md	No	
			[227]	232.0	231.0	238.0	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	

1 atm = 760 torr = 760 mm Hg R = 0.08206 L•atm/mol•K R = 8.314 J/mol•K	1 atm = 1.013 bar 1 L•atm = 101.3 J 1 J= 1 kg•m ² /s ²	pV = nRT
$\label{eq:pA} \begin{split} p_A &= X_A \; p_A^\circ \\ \Delta T_b &= K_b \; m_B \end{split}$	$ [B] = k \ p_B \\ \Delta T_f = K_f \ m_B $	$\Delta p_{\rm A} = X_{\rm B} p_{\rm A}^{\circ}$ $\Pi = [B]RT$
$\begin{split} H &= U + pV \\ \Delta G_{rxn} &= \Delta G^\circ_{rxn} + RT \ln Q \end{split}$	G = H - TS ln $K = -\Delta G^{\circ}_{rxn}/RT$	$\mathbf{K}_{p} = \mathbf{K}_{\mathrm{C}} \; (\mathbf{R}\mathbf{T})^{\Delta n}$

If $ax^2 + bx + c = 0$, then $x = (\frac{-b \pm [b^2 - 4ac]}{2a}^{1/2})$

GENERAL CHEMISTRY 2 SECOND EXAM

Name	
Panthersoft ID	
Signature	

TOTAL_____ (80 points)

Do all of the following problems. Show your work.

.

Part 1. Multiple choice. Circle the letter corresponding to the correct answer. There is one and only one correct answer per problem. [4 points each]

1) The numerical value for the equilibrium constant for the reaction $A_2(g) + 2 B(g) \Rightarrow 2 AB(g)$ is $K_C = 25$. The numerical value for the equilibrium constant for the reaction $AB(g) \Rightarrow \frac{1}{2} A_2(g) + B(g)$, measured at the same temperature, is

a) $K_C = 0.040$ b) $K_C = 0.20$ c) $K_C = 5.0$ d) $K_C = 25$. e) Cannot tell from the information given

2) Consider the following chemical reaction.

 $PCl_5(g) \leftrightarrows PCl_3(g) + Cl_2(g)$

A system containing PCl_3 , PCl_5 , and Cl_2 at a fixed temperature is initially at equilibrium. Which of the following changes will lead to an increase in the number of moles of PCl_3 in the system?

a) Addition of 0.100 moles of Cl_2 into the system

b) Addition of 0.100 moles of PCl₅ into the system

c) Decreasing the volume of the system by 2.00 L

d) Both a and c

e) Both b and c

3) A Bronsted base is

- a) a proton acceptor
- b) a proton donor

c) an electron pair acceptor

d) an electron pair donor

e) any ionic compound that will dissolve in water

4) Which of the following is a polyprotic acid?

a) HClO₂
b) HClO₃
c) HI
d) HNO₃
e) H₂SO₃

Part 2. Short answer.

1) The free energy change for the reaction

 $2 \operatorname{NO}_2(g) \leftrightarrows \operatorname{N}_2O_4(g)$

is $\Delta G^{\circ}_{rxn} = -5.3$ kJ/mol at T = 25. °C. Based on this information, find the numerical value for K, the equilibrium constant, for this reaction. [6 points]

2) A system containing the gases Cl₂, NO, and NOCl will achieve equilibrium. The process that takes place is

 $2 \operatorname{NOCl}(g) \leftrightarrows 2 \operatorname{NO}(g) + \operatorname{Cl}_2(g)$

At T = 500. K, the partial pressures of gas present at equilibrium are $p(Cl_2) = 0.608$ atm, p(NO) = 0.240 atm, and p(NOCl) = 1.36 atm.

a) What is the numerical value for K_p for the above reaction at T = 500. K? [4 points]

b) What is the numerical value for K_C for the above reaction at T = 500. K? [4 points]

3) The pH of an aqueous solution is pH = 8.82 at T = 25 °C. Find $[H_3O^+]$, $[OH^-]$, and the pOH for the solution. [8 points total]

4) Answer each of the following questions by filling in the blank. [4 points each]

a) The conjugate base of HCO3⁻.

b) The pH of pure water at T = 50.°C. (Note $K_w = 5.5 \times 10^{-14}$ at T = 50.°C) 5) For each of the following questions circle the correct answer. There is one and only one correct answer per question. [4 points each]

A weak acid			
HI	HBr	HCl	HF
A strong soluble base			
AgOH	Cu(OH) ₂	Ba(OH) ₂	Fe(OH) ₃

Part 3. Problems.

1) A solution is prepared (at T = 25.0 °C) by adding 2.97 g of potassium hydroxide (KOH, MW = 56.11 g/mol) to water. The final volume of the solution is V = 250.0 mL. What is the pH of the solution? [10 points]

2) The numerical value for the equilibrium constant for the reaction

$$H_2(g) + I_2(g) \leftrightarrows 2 HI(g)$$

is $K_C = 57.0$ at T = 700. K.

The initial concentration of H_2 and I_2 in a system at T = 700. K are $[H_2] = 0.2000$ mol/L and $[I_2] = 0.1000$ mol/L. No HI is initially present in the system. What are the concentrations of H_2 , I_2 , and HI that are present when the system reaches equilibrium? [16 points]